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Abstract

The elution band profiles of two partially separated components were calculated for a radially heterogeneous cylindrical
column, using a modified equilibrium-dispersive model, assuming no radial dispersion. Steady-state flow-rate is assumed
with a given cylindrical radial distribution of the velocity. The results show a marked degradation of the column performance
when the ratio of the mobile-phase velocities at the column center and at the wall differs from unity by more than a few

percent.
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1. Introduction

The theory of chromatography has almost always
assumed that the column is radially homogeneous
and that the radial distribution of the mobile-phase
flow velocity is flat, ie., is well described by the
plug flow condition [1]. Experimental results have
falsified this assumption every time systematic de-
terminations of the radial distribution of the mobile-
phase velocity across a chromatographic column
have been carried out [2-7]. Nevertheless, attention
has only recently been focussed on the consequences
in non-linear and preparative chromatography of a
non-plug distribution [7]. The recent work by Yun
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and Guiochon [7] was devoted to the extension of
the ideal model solution to the case of a radial
distribution of the mobile-phase velocity in an ideal
column, ie., a column in which mass transfer
between phases is instantaneous and there is no axial
dispersion. The third condition of the ideal model
[1], plug flow, was relaxed. The work was limited to
the single-component case and six types of flow
distributions were considered, parabolic with ex-
tremum velocity at the column center, parabolic with
extremum velocity at the center, and sinusoidal, with
an extremum at the column center (7]. Important and
characteristic changes of the elution band profiles
were shown to take place as soon as the ratio of the
maximum and the minimum velocities exceeded
unity by more than a few percent. Although a
concentration shock propagates along each parallel to
the column axis, all the band profile recorded by a
bulk detector appears to harbor a front shock layer.
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The band top is somewhat eroded in the cases which
are most similar with actual experimental profiles.

The marked differences observed between ex-
perimental profiles and these theoretical results large-
ly exceed those which could be expected for an ideal
model solution [1]. They suggest that either the flow
pattern in actual columns does not deviate much
from plug flow or the model does not take into
account an important feature of flow in actual
columns. The first possibility does not seem to agree
with independent results regarding the compressibili-
ty of the packed beds in large-size chromatographic
columns {8,9]. Among the reasons why the ideal
model could be unrealistic, we can list the following:
(i) radial dispersion in packed columns could con-
tribute significantly to relax the influence of a radial
velocity distribution (this is quite doubtful in view of
independent results regarding radial or transverse
dispersion [3,4,10]); (ii) the streamlines are not
parallel to the column axis (if the fastest streamlines
are somehow longer than average, this could com-
pensate for the apparent spreading due to a cylindri-
cal distribution of the flow velocity); and (iii) the
velocity distribution is closed to plug flow in a large
part of the cross-section area of the column.

Be like as it may, the importance of radial column
homogeneity, which still appears to be minor in
modern analytical high-performance liquid chroma-
tography (HPLC), is quite an important problem in
preparative scale applications. The much larger size
of the column enhances the possibility of large-scale
fluctuations of the packing density, hence of the local
velocity of the mobile phase which could cause
excessive losses in the column performance. As there
are many reasons for which poor column efficiency
and abnormal band profiles can be observed, it is
useful to know which results each one of them can
produce for diagnostic purposes. It would be easy to
solve the problem of the separation of two com-
ponents within the framework of the ideal model,
assuming a given radial velocity profile, by follow-
ing the same approach as for the single-component
problem. This does not seem useful at this stage
because of the complex features of the analytical
solution of the two-component problem in the ideal
model. It seems more useful to calculate and study
solutions of the equilibrium-dispersive model of
chromatography.

The goal of the present work is the discussion of
such solutions and the investigation of the influence
of various velocity distributions across the column.
The calculation of the individual band profiles of the
components of a binary mixture will allow the
determination of the relationship between the am-
plitude of the variation of the velocity and the loss of
recovery yield and production rate. This work should
contribute to improve our understanding of the
process of preparative chromatography.

2. Theory

The equilibrium-dispersive model of chromatog-
raphy is a modification of the ideal or equilibrium
model which consists in keeping the dispersive term
in the differential mass balance and further replacing
the axial dispersion coefficient by a larger, apparent
dispersion coefficient to account for the resistance to
mass transfer between the two phases in the column
{1]. The equilibrium between these phases is as-
sumed to be achieved instantaneously, however. This
model has been used extensively and successively in
the calculation of band profiles for single-component
and multicomponent mixtures in classical non-linear
chromatography, assuming that the column can be
considered as unidimensional. It has been shown that
its solutions agree well with experimental results
whenever the kinetics of mass transfer between and
across the phases of the chromatographic system are
fast and the column efficiency exceeds a few hun-
dred plates [1].

The new model used here is a variant of the
equilibrium-dispersive model which considers a ra-
dial velocity distribution. It assumes constant local
equilibrium between the two phases and accounts for
the finite column efficiency by using an apparent
axial dispersion coefficient which is the same as for
an homogeneous, unidimensional column. In princi-
ple, such a model should also include a radial
dispersion coefficient to account for the radial disper-
sive flux which takes place when radial concentration
gradients arise. We know, however, that the radial
[3,4] or transverse [10] dispersion coefficient is
much smaller than the axial dispersion coefficient.
Around the mobile phase for which the column
efficiency is maximum, the radial dispersion coeffi-
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cient is three times smaller than the axial dispersion
coefficient. In the range of velocities typically used
in chromatography, this ratio exceeds often one order
of magnitude. Accordingly, the influence of radial
dispersion can be neglected as a first approximation.
That the contribution of radial dispersion is indeed
often negligible has been shown recently in a study
of the migration and broadening of a cylindrical
pulse, coaxial with the column but of narrower
diameter [11]. In most practical cases, the pulse will
not broaden in the radial direction to the point that its
concentration becomes significant at the wall before
its elution. Accordingly, an extension of the equilib-
rium-dispersive model which neglects radial disper-
sion could be a realistic, practical solution for the
elution profile of the components of a binary mixture
at the exit of a cylindrical column.

2.1. Mathematical model of the system.

The differential mass balance equations of the two
components are written

aC, 9q, 1 azc1
o +F o1 + u(r) 3z Dz
aC, 94, 2 82C2
” + F” + u(ry 3 =D, pYe

where C; and g, are the mobile and stationary phase
concentrations of component i (i =1 or 2), respec-
tively; u(r) is the linear velocity of the liquid phase;
F is the phase ratio of the packing (F = (1 — €)/¢,
with € total column porosity); and D, is the apparent
axial dispersion coefficient, related to the column
HETP. For the lack of more information, we assume
that €, hence F, is constant in the entire column.

Since we assume constant equilibrium between the
two phases, g; and C, are related by the equilibrium
isotherm. In this work, we will assume that this
isotherm is accounted for by the Langmuir equation.
For component i, we have

_ a,C,
97 1+b,C, +b,C,

The initial condition of the problem is

Ciz,r,nt=0)=0

The boundary condition corresponds to the in-
jection of a rectangular concentration pulse of width
t, and height C;,. We assume that the amount of feed
injected is spread homogeneously over the entire
inlet cross-section of the column (i.e., the radial
injection profile is flat). We have previously dis-
cussed the relationship between the problems of a
flat injection in a radially heterogeneous cylindrical
column and of a radial distribution of the injection
profile in a column with piston flow and we have
shown that they are equivalent [7]. The boundary
condition is written

Cz=0,rt)=C, for 0<r=¢

Cz=0,r,0)=0 for ¢, <t
2.2. Calculation of numerical solutions

The procedure used is similar to the one employed
in the calculation of elution band profiles in a
radially heterogeneous cylindrical column in the
framework of the ideal model [7]. The column is
divided into n concentric annular columns of radius r
(0<r<R_, with R, the column radius) and thick-
ness Ar = R_/n. For the numerical calculations, we
took n = 50. The velocity is assumed to be constant
in each annular column. The elution profile at the
end of each annular column is calculated as a
solution of the equilibrium-dispersive model of
chromatography. The elution profile at the end of the
column is obtained by summing up the differential
amounts eluted from all the annular columns at any
given time and reporting this amount to the corre-
sponding volume of mobile phase:

2217 r; dr u(r,) C(r,,t)
Cone ==
2277' r. Ar u(r,)

i=1

Zr,. Ar u(r;) C(r,,t)
_ =1

Er,- Ar u(r;)
i=1

where Cavg(t) is the cross-section average concen-

tration, r; is the radius of the ith annular column,
u(r;) is the mobile phase velocity in the ith column,
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Fig. 1. Individual band profiles for a 3:1 mixture. Total loading factor, 20%. Column length, 15.0 cm; phase ratio, F = 0.4; column
efficiency, 3000 theoretical plates; Langmuir isotherm coefficients, ¢, = 12.0, b, = 0.024, a, = 16.8, b, = 0.0336; separation factor, o = 1.4.
Parabolic velocity distribution with maximum velocity at the column center; ratio of maximum to minimum velocity, solid line, 1.0 (piston
flow); dashed line, 1.05; dash-dotted line, 1.10. Inset: total concentration profiles.

and C(r,t) is the elution band profile given by the
equilibrium-dispersive model for the ith annular
column.

The chromatograms obtained are presented as
plots of the concentrations of the two components
versus time. There are no convenient normalization
parameters allowing a simplification of these pro-
files. Also given on the figures are the cutting points
for the production of 99% pure fractions.

3. Results and discussion

Typical results of the calculations are shown in
Figs. 1-3. The main figures correspond to the

individual band profiles of the two components, with
relative compositions of the binary mixtures of 3/1
(Fig. 1), 1/1 (Fig. 2) and 1/3 (Fig. 3), respectively,
with a total loading factor of 20% and a separation
factor of 1.40. The insets show the corresponding
total concentration profiles, as recorded by a non-
selective detector. In all cases, the velocity profile is
parabolic, with a maximum velocity at the column
center. Note that these velocity profiles should not be
mistaken for the Hagen—Poiseuille velocity profiles
in empty tubes. As explained previously [7], there is
a profound difference between the radial distribution
of the velocities in an empty tube (Hagen—Poiseuille
profiles, due to viscous friction along the wall) and
in a packed column, in which the velocity dis-
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Fig. 2. Same as Fig. 1, but 1:1 mixture.

tribution is a consequence of a non-homogeneous
packing density. Furthermore, the velocity in an
empty tube is O at the column wall. In the present
case, the velocities at the column wall and in its
center are very close and the ratio of the extreme
values of the velocity is close to unity. The parabolic
profile was chosen because it is simple, yet close
enough to the experimental results reported by Baur
et al. [5] and by Farkas et al. [6] in analytical
columns.

Three profiles are shown in each figure, corre-
sponding to a ratio of the maximum velocity (center)
to the minimum velocity (at the wall) of 1.00 (flat
velocity profile or plug flow, presented for the sake
of reference), 1.05 and 1.10. The main differences
between the profiles obtained for various values of
the highest to lowest velocity ratio is mainly around
the shock layers of the two profiles. The effect of a

non-homogeneous velocity distribution is similar to
that of a higher value of the coefficient of apparent
axial dispersion, i.e., of a higher resistance to mass
transfer. The front of the first component is less steep
at high ratios and the shock layer between the two
components is also much thicker. By contrast, the
rear profile of the second component is nearly
unchanged, although the column efficiency is rela-
tively high (3000 theoretical plates). This profile is a
diffuse boundary and is little affected by an apparent
increase of the axial dispersion.

The vertical lines in the Figs. 1-3 correspond to
the cutpoints for the preparation of 99% pure frac-
tions. The first cutpoint (labelled la, 2a, or 3a)
corresponds to the end of the collection of the
purified first component. The second cutpoint (la-
belled 1b, 2b, or 3b) indicates the beginning of the
collection of the second component of the mixture.
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Fig. 3. Same as Fig. 1, but 1:3 mixture.
Table 1 Table 2
Cutpoints position (s) Recovery yield (%)
Velocity 99% A 98% A 99% B 98% B Velocity 9% A 98% A 99% B 98% B
ratio ratio
For a 1:3 mixture For a 1:3 mixture
1.00 392.98 393.72 501.49 474.36 1.00 81.47 81.89 55.61 65.10
1.05 384.49 386.73 502.43 474.83 1.05 71.64 73.87 55.36 64.99
1.10 373.80 376.47 504.08 476.01 1.10 57.30 60.54 54.94 64.67
For a 1:1 mixture For a [:1 mixture
1.0 427.42 429.31 557.47 541.59 1.0 84.23 84.79 50.97 55.81
1.05 421.29 425.45 558.73 542.30 1.05 81.09 82.80 50.70 55.63
1.10 411.38 417.20 561.87 544.58 1.10 75.52 78.29 49.89 55.07
For a 3:1 mixture For a 3:1 mixture
1.00 468.78 476.25 609.84 599.33 1.00 86.95 88.51 49.94 52.82
1.05 465.63 475.54 611.88 600.80 1.05 86.00 88.23 49.44 52.50
1.10 458.56 471.37 617.39 605.04 1.10 83.75 86.92 48.04 51.45
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The cutpoints I, 2, and 3 correspond to the chro-
matograms obtained for different velocity profiles, 1
to the flat profile, 2 and 3 to the values of the ratio of
the velocities in the center and at the wall of 1.05
and 1.10, respectively. The positions of the cutpoints
are reported in Table 1 for two values of the fraction
purity, 98 and 99%. The values of the recovery yield
for the two components are given in Table 2. There
is very little loss of recovery for the second com-
pound, at most one percentage point. By contrast, the
recovery yield of the first component decreases by
nearly 30% for the 1:3 mixtures, in which case the
displacement effect is strongest, which illustrates the
consequences of the increased dispersion around the
intermediate shock layer. The effect is lesser in the
case of the other two mixtures because the displace-
ment effect in the case of piston flow was less
intense to begin with.

In conclusion, a modest degree of non-homo-
geneity of the column packing may have a relatively
important adverse effect on the production rate and
recovery yield observed in preparative chromatog-
raphy.
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